《求小数的近似数》教案

时间:2026-01-05 12:26:09
《求小数的近似数》教案

《求小数的近似数》教案

作为一位优秀的人民教师,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么应当如何写教案呢?下面是小编整理的《求小数的近似数》教案,欢迎阅读,希望大家能够喜欢。

《求小数的近似数》教案1

设计说明

学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:

1.创设生活情境,感受数学与实际生活的联系。

《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

2.注重类推,让学生经历知识迁移的过程。

求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

3.注重引导,让学生在探究中学习。

在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

课前准备

教师准备 多媒体课件 卡片

教学过程

⊙复习导入

1.复习旧知。

(1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

986534 58741 31200

50047 398010 14870

(2)下面的□里可以填哪些数字?

32□645≈32万 47□905≈47万

学生填完后,引导学生说一说是怎么想的。

2.导入新课。

师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

⊙探究新知

1.课件出示教材例1情境图。

从图中你获得了哪些数学信息?

(豆豆的身高是0.984 m)

2.探究求近似数的方法。

(1)豆豆的'身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

(2)你是怎样得出豆豆身高的近似数的?

生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

教师板书: 0.984≈0.98

小于5,舍去

(3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

教师板书:0.984≈1.0

大于5,向前一位进1

《求小数的近似数》教案2

教学内容:教科书第69页的例1,完成第70页上半页的“做-做”,练习十六的第1题。

教具准备:投影片或小黑板若干块。

教学目的:使学生初步学会根据要求用“四舍五入法”保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

教学重点:使学生初步学会根据要求用“四舍五入法”保留一定的小数位数,求出小数的近似数。

教学难点:培养学生综合运用知识的能力。

教学过程:

一、复习

先省略万后面的尾数,求出近似数.再省略千后面的尾数,求出近似数。

1295356089020114536697010

二、新课

教师:我们已经学过求一个整数的近似数(在实际使用小数的时候,有时也没

有必要说出它的准确数,只要说出它的近似数就够了,例如,大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,我们已经会求一个整数的近似数。求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要田“四舍五入法”保留一定的小数位数。

教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

接下来用“四舍五入”法怎样做?(因为千分位上的数3不满5把它舍去。)

教师板书:2.953≈2.95

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

教师用投影片(或小黑板)出示例1的第2小题:2.953保留-位小数,它的近似数是多少?

教师:2.953保留一位小数,就是要省略哪-位后面的尾数?(省略十分位后面的尾数。)

省略十分位后面的尾数,要看哪-位上的数?(要看百分位上的数。)

用,“四舍五入法”怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进10)

2.9加上进上来的1就是l0。所以2.953≈3.0

教师板书:2.953≈3.0

教师强调:这题的要求是保留-位小数,所以小数末尾的“0”不能去掉。

教师:谁能连贯地把做这题的过程说-说。

指名让学 ……此处隐藏15097个字……会了求小数的近似数的?

师:数学知识间有着密切的'联系,利用旧知的迁移是探究学习新知的好方法。

6.总结求近似数的方法。

a.完成“试一试”。学生独立完成,组织交流。

b.怎样求一个小数的近似数?

要求学生一起梳理求一个小数的近似数的方法和注意点。

指导归纳:

①弄清保留几位小数

②确定看哪一位上的数,用四舍五入法求出结果。

求一个小数的近似数时有什么注意点?(正确使用“≈”,近似数末尾的“0”不能去掉。)

三、分层练习,内化提升。(14分钟左右)

【基本练习】

(一)适应练习。

1.练一练。

点拨:比较两小题要求精确到的数位不同。

2.练习七第5题。

近似数末尾的“0”不能去掉。

3.练习七第6题。

要求学生完成改写后放在原题中读一读、比一比。

(二)变式练习

1.练习七第7题。

学会区分精确数与近似数。

2.练习七第8题。

改写与求近似数的对比练习。

(三)创编练习

1.在下面的□里填适当的数字。

□.□□≈2.3

□.□□>2.3

2.判断:准确数大于近似数。()

3.填出下面的小数各在哪两个整数之间。

()<4.6<()()<48.2<()

()>11.12>()()>0.9>()

四、课堂总结:

通过这节课的学习,你学到了什么知识呢?

教学反思:

《求小数的近似数》教案15

教学目标:

1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。

教学重点:掌握用“四舍五入法”求一个小数的近似数。

教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。

教学过程:

一、复习旧知,情境导入。

1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!

2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。

先写黑板:12953≈1万

3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)

师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。

师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)

4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?

学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!

二、整合情景,探究交流。

1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)

这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?

保留两位小数,就要省略百分位后面的.尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。

谁再来说一遍?(2-3名同学。表扬。)

2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?

(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。

3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。

4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)

5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)

不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。

求得的近似数1.0和1比较,哪一个更精确一些,为什么?

幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。

三、练习。(智力闯关。)

同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。

1.第一关。保留一位小数。

0.58≈0.63.788≈3.8

精确到百分位。精确到百分位就是保留几位小数?

12.004≈12.001.987≈1.99

保留整数。

9.956≈109.0448≈9

2.第二关。在□里填数。

2.9□≈2.98.5□7≈8.56

3.第三关。

姚明的身高约为2.2米,姚明的身高可能是多少米?

2.15(6、7、8、9)2.155……

2.20(1、2、3、4)2.……

四、全课。

你今天有哪些收获?保留一位小数,就是精确到十分位,……

板书设计

求小数的近似数

12953≈1万0.984≈0.98保留两位小数,看千分位。

小于5,舍去。小于5,舍去

0.984≈1.0保留一位小数,看百分位。

0.984≈1保留整数,看十分位。

大于5,向前一位进1。

《《求小数的近似数》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式