
小学数学圆柱体积的教案
作为一名默默奉献的教育工作者,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。快来参考教案是怎么写的吧!下面是小编精心整理的小学数学圆柱体积的教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学圆柱体积的教案1教学目标:
1、知识技能
结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式。
教学难点:
圆柱体积计算公式的推导过程
设计理念:
圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:
1、合作探究学习为主要的学习方式。
2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。
3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。
教具准备:
圆柱的体积公式演示课件水槽水体积不同的圆柱体直尺细绳计算器。
教学过程
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究、
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh(设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
三、巩固发展
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
2、巩固反馈
填表
底面积(㎡)高(m)圆柱体积(m3)
63
0.58
82
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的`掌握本课重点,夯实基础知识)
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)
集体订正,说一说圆柱体的体积还可以怎样算?
(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理 ……此处隐藏11884个字……才同学们想出来的办法吗?(不能)
那怎么办?
学生试说出自己的办法。
师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、经历体验、探究新知
1、推导圆柱的体积公式。
师:你们打算怎么去研究圆柱的体积?
小组同学讨论研究的方法。
2、学生动手操作感知
(1)学生以小组为单位操作体验。(操作学具,进行拼组)。
(2)学生小组汇报交流:
近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高......
(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)
3、教师课件演示圆柱转化成长方体的过程。
4、师生共同推导出圆柱的体积公式:
长方体的体积=底面积高
圆柱的'体积=底圆柱面积高
v = sh
5、巩固公式
①v、s、h各表示什么?
②知道哪些条件就可以求圆柱的体积?
а、知道底面积和高可以直接用公式计算圆柱的体积;
b、知道底面半径和高,可以先计算出底面积,再计算体积;
c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。
学生回答后师板书。
6、教学例4、例5。
课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。
三、实践练习
1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。
2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。
同学们,你们知道小林是怎样想的吗?
四、课堂总结;
通过本节课的学习,你有什么收获?
小学数学圆柱体积的教案15学内容:教科书第46—47页练习十一的第8—13题。
教学目的:通过综合练习,使学生进一步掌握有关圆柱的表面积和体积的计算。
教具准备:长方体、正方体和圆拄模型各一个。
教学过程:
一、复习
1.复习平面图形。
教师:我们已经学过的平面图形有哪些?
引导学生总结出已学过的平面图形有:长方形、正方形、平行四边形、三角形、梯形和圆。
教师:它们各自的面积公式是什么?
指名学生分别回答,教师板书在黑板上:
长方形的面积=长×宽
正方形的面积=边长×边长
平行四边形的面积=底×高
三角形的面积= ×底×高
梯形的面积:= ×(上底+下底)×高
圆的面积=∏×R×R
2.复习立体图形。
教师:我们已经学过的立体图形有哪些?
引导学生总结出已经学过的立体图形有:长方体、正方体和圆柱。
教师:它们的表面积和体积怎样求?
出示长方体、正方体和圆柱的模型,引导学生通过观察回忆它们表面积和体积的
计算公式·,教师列成表格板书在黑板上:
教师:这三个立体图形的体积公式能否统一成一个呢?
使学生明确长方体、正方体和圆柱的体积公式可以统一写成:“底面积×高”。
教师:—如果长方体与圆柱的`底面积和高分别相等,那么它们的体积相等吗?为什么?
二、课堂练习
l。做练习十一的第8、9题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。
2。做练习十一的第10题。
这是一道联系实际的题目。读题后,教师提问:
“这道题要求前轮转动一周压路的面积。实际上是求什么?”
“那么这个圆柱的底面直径和高分别是多少呢?”
使学生弄清求前轮转动一周压路的面积,就是求前轮这个圆柱的侧面积。而这个圆柱的底面直径就是前轮的直径,这个圆柱的高就是前轮的轮宽。
分析后。让学生做在练习本上。做完后集体订正。
3.做练习十一的第11题。
指名一学生读题后.教师提问:
“这道题已知什么?求什么?”
“装了 桶水是什么意思?”
要使学生明白:装了 桶水就是说水的体积是水桶体积的 即水的体积是24× 立方分米。根据圆柱体积的计算公式,可以直接计算,也可以用列方程来解。
设水面高为X分米。
24× =7.5×X
X=18十7.5
X=2.4
4.做练习十一的第12题。
第(1)题,引导学生从圆柱的体积计算公式人手,由于“圆柱的体积=底面积×高”,所以当底面积相等财,高和体积成正比例。
第(2)题,启发学生根据第(1)题的结论列出比例式进行解答:即:
设另一个圆柱的体积为x立方分米:
=
x=
X=40
5.做练习十一的第13题。
读题后,教师提问:
“两个圆柱的底面半径相等说明了什么?”
“要求第二个圆柱的体积比第一个多多少,应该先求什么?怎样求?”
启发学生仿照第12题,利用比例的知识先求出第二个圆柱的体积.再求出第二个圆柱的体积比第一个多多少立方厘米。
三、选做题
让学有余力的学生做练习十一的第14、15题和思考题。
1,练习十一的第14题。
教学前教师要准备一个实物,或者制作一个教具。通过对教具的观察,使学生明确钢管的体积就是大圆柱的体积减去中间一个小圆柱的体积后剩下的体积,即钢管体积=大圆柱的体积一小圆柱的体积。
2.练习十一的第15题。
这道题是有关体积计算的应用题。要先求出圆柱形粮囤的容积后,再计算其他问题就比较简便。
3.思考题。
这道题需要知道铁块的体积等于它完全浸入水里后所排开水的体积。那么,只要求出铁块从圆柱形容器中的水里取出后,水面下降后所减少的这部分圆柱形水柱的体积,就是铁块的体积。
具体解法: 3.14×( )’×2
=3.14×25×2
=157(立方米)



