高一数学必修一知识点总结

时间:2026-01-29 08:00:07
高一数学必修一知识点总结

高一数学必修一知识点总结

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能够使头脑更加清醒,目标更加明确,不妨让我们认真地完成总结吧。但是总结有什么要求呢?以下是小编为大家收集的高一数学必修一知识点总结,希望能够帮助到大家。

高一数学必修一知识点总结1

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的`数随项数的增大而增大;当d

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).

⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.

⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

⑺记等差数列{a}的前n项和为S.①若a>0,公差d0,则当a≤0且a≥0时,S小.

高一数学必修一知识点总结2

解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

数列

(1)数列的'概念和简单表示法

①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

②了解数列是自变量为正整数的一类函数.

(2)等差数列、等比数列

①理解等差数列、等比数列的概念.

②掌握等差数列、等比数列的通项公式与前项和公式.

③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

④了解等差数列与一次函数、等比数列与指数函数的关系.

高一数学必修一知识点总结3

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的`底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

【函数的应用】

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

高一数学必修一知识点总结4

不等式

不等关系

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式

①会从实际情境中抽象出一元二次不等式模型.

②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题

①会从实际情境中抽象出二元一次不等式组.

②了解二元一次不等式的.几何意义,能用平面区域表示二元一次不等式组.

③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

(4)基本不等式:

①了解 ……此处隐藏7936个字……最大值s2⑴若xy.4⑵若xyp(积为定值),则当xy时,和xy取得最小值2p.

高一数学必修一知识点总结13

集合的运算

1。交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作AB(读作A交B),即AB={x|xA,且xB}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的`并集。记作:AB(读作A并B),即AB={x|xA,或xB}。

3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:

⑴CU(CUA)=A

⑵(CUA)

⑶(CUA)A=U

高一数学必修一知识点总结14

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

III.二次函数的'图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P(-b/2a,(4ac-b^2)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

高一数学必修一知识点总结15

集合的运算

运算类型交 集并 集补 集

定义域 R定义域 R

值域>0值域>0

在R上单调递增在R上单调递减

非奇非偶函数非奇非偶函数

函数图象都过定点(0,1)函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,则 ; 取遍所有正数当且仅当 ;

(3)对于指数函数 ,总有 ;

二、对数函数

(一)对数

1.对数的概念:

一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

说明:○1 注意底数的限制 ,且 ;

○2 ;

○3 注意对数的书写格式.

两个重要对数:

○1 常用对数:以10为底的对数 ;

○2 自然对数:以无理数 为底的对数的对数 .

指数式与对数式的互化

幂值 真数

= N = b

底数

指数 对数

(二)对数的运算性质

如果 ,且 , , ,那么:

○1 + ;

○2 - ;

○3 .

注意:换底公式: ( ,且 ; ,且 ; ).

利用换底公式推导下面的结论:(1) ;(2) .

(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:○1 对数函数的.定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

○2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>10

定义域x>0定义域x>0

值域为R值域为R

在R上递增在R上递减

函数图象都过定点(1,0)函数图象都过定点(1,0)

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第四章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。

即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

○1 (代数法)求方程 的实数根;

○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

5.函数的模型

《高一数学必修一知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式